EFFICIENT QUANTUM CIRCUITS FOR BLOCK ENCODINGS OF A PAIRING HAMILTONIAN AND BEYOND

Chao Yang Applied Mathematics & Computational Research Division Lawrence Berkeley National Laboratory

Joint work with Diyi Liu (Minnesota) Lin Lin (Berkeley), Weijie Du and James Vary (Iowa), Guang Hao Low (Google), Shuchen Zhu (Duke)

Outline

- Background and motivation
- General template for block encoding sparse matrices
- Examples
- Block encoding circuit for pairing Hamiltonian
- Generalization and further improvement
- D. Camps, L. Lin, R. Van Beeumen, C. Yang,
 "Explicit Quantum Circuits for Block Encodings of Certain Sparse Matrices", SIMAX, 45(1), 2024.
- D. Liu, W. Du, L. Lin, J. P. Vary and C. Yang, "An Efficient Quantum Circuit for Block Encoding a Pairing Hamiltonian", J. Comp. Sci, 85, 2025

Sparse linear algebra and iterative methods

- Linear systems Ax = b, $A \in \mathbb{C}^{N \times N}$, $N = 2^n$ > $x = A^{-1}b \approx p_k(A)b$
- Least squares $\min_{x} ||Ax b||_2, A \in \mathbb{C}^{m \times N}, N \ge m$ > $x = A^{\dagger}b = (A^*A)^{-1}A^*b \approx p_k(A^*A)A^*b$
- Eigenvalue problem: $Ax = \lambda x$ > $x \approx \delta(A - \lambda I)x_0 = p_k(A)x_0$

Iterative Methods: A is large but sparse or Av multiplication can be performed efficiently

Quantum (Sparse) Linear Algebra

- Challenge:
 - *A* is generally not unitary
 - Standard linear algebra operations are non-trivial on a quantum computer, e.g., axpy etc.
- Solution:
 - Embed properly scaled A into a much larger unitary U_A that can be decomposed into an efficient quantum circuit (block encoding)

$$\begin{pmatrix} A & * \\ * & * \end{pmatrix} \begin{pmatrix} \psi \\ 0 \end{pmatrix} = \begin{pmatrix} A\psi \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ * \end{pmatrix} = |0\rangle |A\psi\rangle + |1\rangle |*\rangle$$

- Embed p(A) into a much larger unitary U (without forming p(A) explicitly) that can be expressed in terms of U_A and U_A^{\dagger} (quantum signal processing/quantum singular value transformation)
- Apply $U_{p(A)}$ to a carefully prepared state, and make measurements
 - Childs, Kathari and Somma, SIAM J. Comput, 2017
 - Gilyén, Su, Low, and Wiebe, ACM SIGACT STOC., 2019

General template for block encoding for s-sparse A

- Matrix dimension: $N = 2^n$
- Each column of A has $s = 2^m$ nonzero elements (constant or poly(n))

•
$$D_s |0^m\rangle = \frac{1}{\sqrt{s}} \sum_{\ell=0}^{s-1} |\ell\rangle$$
 (diffusion operator)
• $O_A |0\rangle |\ell\rangle |j\rangle = \left(A_{c(\ell,j),j} |0\rangle + \sqrt{1 - |A_{c(\ell,j),j}|^2} |1\rangle \right) |\ell\rangle |j\rangle$ (numerical)
 $c(\ell,j)$: row index of the ℓ th nonzero in the *j*th column
• $O_C |\ell\rangle |j\rangle = |\ell\rangle |c(\ell,j)\rangle$ (symbolic)
• Verify: $\langle 0|\langle 0^m|\langle i|U_A|0\rangle |0^m\rangle |j\rangle = \frac{1}{s} A_{ij}$

Gilyén, Su, Low, and Wiebe, ACM SIGACT STOC., 2019

Examples

Banded circulant matrix

(5) $c(j,\ell) = \begin{cases} 2j & \text{if } \ell = 0 \text{ and } j < 2^{n-1} \text{ (left child)}, \\ 2j+1 & \text{if } \ell = 1 \text{ and } j < 2^{n-1} \text{ (right child)}, \\ j/2 & \text{if } \ell = 2 \text{ and } j \text{ even (parent)}, \\ (j-1)/2 & \text{if } \ell = 3 \text{ and } j \text{ odd (parent)}, \\ j & \text{if } 3 < \ell < 8 \text{ (diagonal)}, \end{cases}$

$$c(j,\ell) = \begin{cases} \mod(j-1,N) & \text{if } \ell = 0 \text{ (superdiagonal)}, \\ j & \text{if } \ell = 1 \text{ (diagonal) or } 3, \\ \mod(j+1,N) & \text{if } \ell = 2 \text{ (subdiagonal)}. \end{cases}$$

Extended binary tree

O_C circuits

Banded circulant matrix

Extended binary tree

7

 O_A circuits

Banded circulant matrix (rotation independent of $|j\rangle$)

•
$$\theta_0 = 2\cos^{-1}\gamma$$

•
$$\theta_1 = 2\cos^{-1}(1-\alpha)$$

•
$$\theta_2 = 2\cos^{-1}\beta$$

$$\langle 0|\langle 0^m|\langle i|U_A|0\rangle|0^m\rangle|j\rangle = \frac{1}{s}A_{ij}$$

Extended binary tree (Rotation depends on both $|\ell\rangle$ and $|j\rangle$)

• $\theta_0 = 2\cos^{-1}\beta$

•
$$\theta_1 = 2\cos^{-1}\frac{\alpha}{4}$$

•
$$\theta_2 = 2\cos^{-1}\frac{\gamma}{4}$$

•
$$\theta_3 = 2\cos^{-1}(\frac{\gamma}{4} - \frac{\beta}{2})$$

Pairing Hamiltonian

Fermionic Hamiltonian in second quantization

$$\mathcal{H} = \sum_{i,j} h_{i,j} c_i^{\dagger} c_j + \sum_{i < j,k < l} g_{i,j,k,l} c_i^{\dagger} c_j^{\dagger} c_k c_l$$

Pairing Hamiltonian

$$\mathcal{H} = \sum_{p=0}^{n-1} \sum_{q=0}^{n-1} g_{2p,2p+1,2q,2q+1} c_{2p}^{\dagger} c_{2p+1}^{\dagger} c_{2q} c_{2q+1}$$

- Simplified model used in nuclear physics to model pairwise correlations among nucleons
- Simplified representation

$$\mathcal{H} = \sum_{p=0}^{n-1} \sum_{q=0}^{n-1} v_{p,q} a_p^{\dagger} a_q$$

Pseudo creation/annihilation: $a_p^{\dagger} \equiv c_{2p}^{\dagger} c_{2p+1}^{\dagger}$, $a_q \equiv c_{2q} c_{2q+1}$

O_C for Pairing Hamiltonian

- The sparsity structure of $H = \sum_{p=0}^{n-1} \sum_{q=0}^{n-1} v_{p,q} a_p^{\dagger} a_q$ is determined by $\sum_{p=0}^{n-1} \sum_{q=0}^{n-1} a_p^{\dagger} a_q$
- $|j\rangle = |j_0 j_1 \cdots j_{m-1}\rangle, j_i \in \{0,1\}$
- $a_p^{\dagger} a_q |j\rangle = 0$ unless $|j\rangle_p = |0\rangle$ and $|j\rangle_q = |1\rangle$

• If
$$|j\rangle_{p} = |0\rangle$$
 and $|j\rangle_{q} = |1\rangle$

$$\begin{bmatrix} a_{p}^{\dagger} \ a_{q} | j \rangle \end{bmatrix}_{p} = |1\rangle, \begin{bmatrix} a_{p}^{\dagger} \ a_{q} | j \rangle \end{bmatrix}_{q} = |0\rangle$$

i.e., $a_p^{\dagger} a_q | j \rangle$ simply swaps the *p*-th and *q*-th qubits of $| j \rangle$

• Define $l \equiv (p,q)$ and c(l,j) as $c(l,j) = \begin{cases} SWAP(j;p,q), & \text{if } |j\rangle_p = |0\rangle \text{ and } |j\rangle_q = |1\rangle \\ & \text{invalid,} & \text{otherwise} \end{cases}$

O_C as a select oracle

- Notation simplification:
 - ✓ Define $l \equiv (p,q)$
 - ✓ Define $H_l = a_p^{\dagger} a_q$
- $\sum_{l=0}^{L-1} H_l$ can be encoded by a select oracle (similar to LCU except that H_l is not unitary)

$$SELECT \equiv \sum_{l} |l\rangle \langle l| \otimes H_{l}$$

• Need additional ancilla qubits to invalidate $H_l |j\rangle$ for j's that don't satisfy $|j\rangle_p = |0\rangle$ and $|j\rangle_q = |1\rangle$

The general structure of O_C circuit

The U_l circuit

 Turn the controlling qubit from |0> to |1> when

 $|j\rangle_{\rm p} = |0\rangle$ and $|j\rangle_{\rm q} = |1\rangle$

with controls on both the selection and Fock qubits

- Perform a controlled swap
- Restore validation and controlling qubits to |0> (uncompute)

Simplified circuit for p = q

The $O_{\mathcal{H}}$ circuit

• If $|j\rangle_{\rm p} = |0\rangle$ and $|j\rangle_{\rm q} = |1\rangle$, l = (p,q)

$$O_{H}|0\rangle|l\rangle|j\rangle = \left(H_{c(l,j),j}|0\rangle + \sqrt{1 - \left|H_{c(l,j),j}\right|^{2}}|1\rangle\right)|l\rangle|j\rangle$$

- Otherwise, the output is to be discarded
- The general structure is a product of controlled rotations

The $O_{\mathcal{H}}^{(l)}$ circuit

Rotation qubit

Selection qubits

Fock qubits

General 2nd quantized fermionic Hamiltonian

•
$$\mathcal{H} = \sum_{p,q} h_{p,q} a_p^{\dagger} a_q + \sum_{p < q,r < s} g_{p,q,r,s} a_p^{\dagger} a_q^{\dagger} a_r a_s$$

Phase factor:

$$a_p^{\dagger} a_q |j\rangle = (-1)^{d_j(p,q)} |\text{FLIP}(j; p, q)\rangle$$

$$\left\{a_p, a_q^{\dagger}\right\} = \delta_{p,q}$$

if $|j\rangle_p = |0\rangle$ and $|j\rangle_q = |1\rangle$

- $d_j(p,q) = j_{p+1} + j_{p+2} + \dots + j_{q-1}$ where (j_0, j_1, \dots, j_n) is the binary representation of j.
- FLIP(j; p, q) (the c(l, j) function) is obtained from j by flipping the pth and qth bits in the binary representation (or swapping the pth and qth bits)

Phase oracle

Rewriting a product of Z's using three Z's and CNOT ladder circuits

SWAP-UP selection

 $\mathsf{SW}(p) \colon \left| p \right\rangle \left| j_0 \right\rangle \left| j_1 \right\rangle \cdots \left| j_{n-1} \right\rangle \to \left| p \right\rangle \left| j_p \right\rangle \left| \ast \right\rangle \cdots \left| \ast \right\rangle$

K. Wan, "Exponentially faster implementations of Select(H) for fermionic Hamiltonians", Quantum, 5, 2021

Prepare oracle $O_{\mathcal{H}}$ through data lookup

- Replace controlled rotation (not available as native gates) by quantum data lookup to encode approximate coefficients \tilde{h}_x , \tilde{g}_x ($x \equiv (p,q)$ or $x \equiv (p,q,r,s)$)
- Two steps:
 - 1. Map x to the binary representation of \tilde{h}_x , denoted by a_x using a SELECT-SWAP circuit

$$O_a \colon |x\rangle \left| 0^k \right\rangle \to |x\rangle |a_x\rangle$$

G. H. Low et al, "Trading T-gates for dirty qubits in state preparation and unitary synthesis", Quantum 8, 1375, 2024.

2. Use a_{χ} to generate \tilde{h}_{χ} as a probability amplitude through "direct sampling" HAD: $|b\rangle|0^{m}\rangle|0\rangle \rightarrow \frac{1}{\sqrt{2^{m}}}\sum_{i=0}^{2^{m}-1}|b\rangle|i\rangle|0\rangle$ COMP: $\frac{1}{\sqrt{2^{m}}}\sum_{i=0}^{2^{m}-1}|b\rangle|i\rangle|0\rangle \rightarrow \frac{1}{\sqrt{2^{m}}}\left[\sum_{i=0}^{b-1}|b\rangle|i\rangle|0\rangle + \sum_{i=b}^{2^{m}-1}|b\rangle|i\rangle|1\rangle\right]$

Conclusion

- Second quantized fermionic Hamiltonians can be efficiently block encoded without using Jordan-Wigner transformation
- Creation and annihilation can be directly encoded as controlled bit flips or swaps
- Using SWAP-UP can reduce the number of controls in the SELECT oracle
- Data lookup based PREPARE oracle via SELECT-SWAP and "direct sampling" can further reduce gate count