

PRATT SCHOOL of ENGINEERING

Spin-Boson Dynamics in Trapped lons

Ken Brown Duke University

Computers have transformed chemistry

Electronic energy of LiH and BH⁺ J. Chem. Phys. (1957)

Electronic energy of LiH Nature (2017)

Exa-scale SARS-CoV-2 Nat. Chem. (2021)

Quantum computing for catalysis Phys. Rev. Res. (2022)

Benzene (C₆H₆) challenge J. Phys. Chem. Lett. (2020)

Where is my QPU?

Solar cell optimization depends on vibronic dynamics

System	# Qubits	# Toffoli Gates	Parameters			
(NO) ₄ -Anth [60]	148	$8.9 imes10^8$	$N = 5, M = 19, K = 16, t = 100 \text{fs}, \epsilon = 10\%$			
	154	$2.9 imes 10^9$	$N = 5, M = 19, K = 16, t = 100 \text{fs}, \epsilon = 1\%$			
(NO) ₄ -Anth Dimer [129]	160	$1.8 imes10^9$	$N = 6, M = 21, K = 16, t = 100 \text{fs}, \epsilon = 1\%$			
	164	$2.0 imes10^{10}$	N = 6, M = 21, K = 16, $t = 500 \text{fs}, \epsilon = 1\%$			
$Anth/C_{60}$ [63]	117	$1.5 imes 10^7$	$N = 4, M = 11, K = 16, t = 100 \text{fs}, \epsilon = 1\%$			
	1065	$2.7 imes10^9$	$N = 4, M = 246, K = 16, t = 100 ext{fs}, \epsilon = 1\%$			

Quantum Algorithm for Vibronic Dynamics: Case Study on Singlet Fission Solar Cell Design D. Motlagh arXiv:2411.13669

Cost is driven by mapping bosons to qubits

• The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

P.A.M. Dirac, Proc. R. Soc. A 123, 714 (1929)

Molecular Hamiltonian

$$\hat{H} = -\sum_{A}^{\text{nuc}} \frac{\hbar^2}{2M_A} \nabla_A^2 - \frac{\hbar^2}{2m} \sum_{i}^{\text{elec}} \nabla_i^2 - \sum_{A}^{\text{nuc}} \sum_{i}^{\text{elec}} \frac{Z_A e^2}{4\pi\epsilon_0 r_{Ai}} + \sum_{A>B}^{\text{nuc}} \frac{Z_A Z_B e^2}{4\pi\epsilon_0 R_{AB}} + \sum_{i>j}^{\text{elec}} \frac{e^2}{4\pi\epsilon_0 r_{ij}}$$

Nuclei Kinetic Energy Nuclei-Electron Attraction Electron-Electron Repulsion $\hat{H} = \hat{T}_N(\mathbf{R}) + \hat{T}_e(\mathbf{r}) + V_{eN}(\mathbf{r}, \mathbf{R}) + V_{NN}(\mathbf{R}) + V_{ee}(\mathbf{r})$

Electron Kinetic Energy

Nuclei-Nuclei Repulsion

Born-Oppenheimer Approximation

$$\Psi(\mathbf{r},\mathbf{R}) = \sum_{k} \Psi_{k}(\mathbf{r};\mathbf{R}) \chi_{k}(\mathbf{R})$$
 electronic nuclear

Separate variables based on M_N/m_e>1 Electronic wavefunction for fixed nuclei

$$\hat{H}_{el} = \hat{T}_{e}(\mathbf{r}) + V_{eN}(\mathbf{r}; \mathbf{R}) + V_{NN}(\mathbf{R}) + V_{ee}(\mathbf{r})$$
$$\hat{H}_{el}(\mathbf{r}; \mathbf{R})\Psi(\mathbf{r}; \mathbf{R}) = E_{el}(\mathbf{R})\Psi(\mathbf{r}; \mathbf{R})$$

Nuclei wavefunction based on distinct electronic states

$$\begin{bmatrix} \hat{T}_N(\mathbf{R}) + T_{kk}''(\mathbf{R}) + E_{el}(\mathbf{R}) \end{bmatrix} \chi_k(\mathbf{R}) = E \chi_k(\mathbf{R})$$
Kinetic Potential

Electronic Structure Problem

 $\hat{H}_{el} = \hat{T}_e(\mathbf{r}) + V_{eN}(\mathbf{r}; \mathbf{R}) + V_{NN}(\mathbf{R}) + V_{ee}(\mathbf{r})$

Map to qubits Jordan-Wigner, Bravyi-Kitaev, Superfast, etc.

$$\widehat{H}_{el} = \sum_{j} P_{j}$$

Phase Estimation

Abrams & Lloyd, PRL (1999) Aspuru-Guzik, Dutoi, Love & Head-Gordon Science (2005) **VQE** Peruzzo et al. Nat. Commun. (2014)

Conical intersections and quantum simulation

Conical intersections are ubiquitous in photochemistry. Quantum simulation allows us to probe quantum effects that may be inaccessible to pump-probe spectroscopy

Photoexcited Vibrational Dynamics in Vicinity of Conical Intersections A. Piryatinski, S. Tretiak, M. Stepanovy, and V. Chernyak, LALP-06-100 (2006) Real-Time Observation of Nonadiabatic Bifurcation Dynamics at a Conical Intersection K.C. Woo, D.H. Kang, and S.K. Kim JACS **139**, 17152 (2017)

Geometric phase on the ground state

Quantum mechanics predicts a geometric phase on the ground state potential

Femtosecond molecule

TIME-RESOLVED OPTICAL TESTS FOR ELECTRONIC GEOMETRIC PHASE DEVELOPMENT

JEFFREY A. CINA* and TIMOTHY J. SMITH, JR.

Department of Chemistry and the James Franck Institute, The University of Chicago, Chicago, Illinois

VÍCTOR ROMERO-ROCHÍN

Instituto de Física, Universidad Nacional Autónoma de México, México, D.F.

Adv. Chem. Phys (1992)

Experiment in molecules never happened

Timing challenging Orientation of molecules in condensed phase More complicated potentials Example predicted experimental signal

Computational view of the wave packet

Simple conical intersection

• A two-dimensional harmonic oscillator with two spin-dependent displacements.

$$H = \sum_{q = \{x, y\}} \frac{p_q^2}{2m} + \frac{mq^2}{2} + F_q \sigma_q q$$

• Adiabatic potential energy surfaces where the spin is the eigenstate of $F_x \sigma_x x + F_y \sigma_y y$

Controlling trapped ions

Nat Rev Mater 6, 892 (2021)

Gates with Raman Lasers

Ion and Motion

R. Lechner et al. PRA (2016) Innsbruck

Two Qubit Pulse Sequences

Ion internal states entangled via shared motional modes

$U = \exp(-i \theta/2 XX)$

A. Sorensen and K. Molmer PRL (1999)

Similar ideas: Solano and Milburn

Mølmer-Sørensen gate

Ion Trap Hamiltonian for sideband transitions: \bullet

$$H = \sum_{i,k=1}^{N} \frac{1}{2} \eta_{ik} \sigma_x^i \Omega_i(t) (a_k^{\dagger} e^{i\theta_k(t)} + a_k e^{-i\theta_k(t)})$$
$$\theta_k(t) = \int_0^t \delta_k(t') dt', \ \delta_k(t) = \mu(t) - \omega_k$$

Hamiltonian in interaction picture coupling ion internal state with motional modes

n be

by a

• After solving TDSE by Magnus expansion, unitary:

$$U_{MS} = \exp\left(\sum_{k=1}^{N} \hat{\alpha}_{k}(t) a_{k}^{\dagger} - \hat{\alpha}_{k}^{\dagger}(t) a_{k}\right) \exp\left(-i\beta(t)\sigma_{x}^{i}\sigma_{x}^{j}\right)$$

$$\hat{\alpha}_{k}(t) = \frac{1}{2}(\eta_{ik}\sigma_{x}^{i} + \eta_{jk}\sigma_{x}^{j})\int_{0}^{t} \Omega(t')e^{i\theta_{k}(t')}dt'$$

$$\beta(t) = \sum_{k=1}^{N} \frac{1}{2}\eta_{ik}\eta_{jk}\int_{0}^{t} \int_{0}^{t'} \Omega(t')\Omega(t'')\sin(\theta_{k}(t') - \theta_{k}(t''))dt''dt'$$

$$Dynamics can be described by by second-order Magnus expansion$$

Controlling Motion Modes

In phase space:

Experimental method and expected results

-2

-4

-2

 p_q^2

2m

0

×

2

 mq^2

-4

-2

0 X 2

 $F_q \sigma_q q$

0.

 $q = \{x, y\}$

Duke

Whitlow et al. Nature Chem. (2023)

-4 -2 x⁰ 2

4

H =

Robust feature

Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator

Dylan J Gorman, Boerge Hemmerling, Eli Megidish, Soenke A. Moeller, Philipp Schindler, Mohan Sarovar, and Hartmut Haeffner Phys. Rev. X **8**, 011038 – Published 7 March 2018

PhySICS See Synopsis: Quantum Simulators Tackle Energy Transfer

Ion Traps for Chemical Dynamics

M. Kang et al. Nature Rev. Chem. (2024) arXiv:2305.03156

Structured Bath

PRATT SCHOOL of ENGINEERING

Vibrational Assisted Energy Transfer

Observe resonant and harmonic enhancement

Wash out oscillations with higher temperature bath

Emulate a T_1 process with a T_2 process

Related Work with Tunable Dissipation: V. So et al. arXiv:2405.10368 (Pagano)

High energy physics and nuclear physics

. . .

Static

charges

Virtual spins

String-Breaking Dynamics in Quantum Adiabatic and Diabatic Processes

F. N. Surace et al.arXiv:2411.10652

Observation of string-breaking dynamics in a quantum simulator

A. De et al. arXiv:2410.13815

Schwinger Model. 1+1D QED

N. Nguyen et al. PRX Quantum 3, 020324 (2022)

Hybrid Oscillator-Qubit Quantum Processors: Simulating Fermions, Bosons, and Gauge Fields

E. Crane et al. arXiv:2409.03747

Ions: J.Y. Araz, M. Grua, J. Montogomery, F. Ringer, arXiv:2410.07436

Bosons as thermal bath

Duke

A. T. Than et al. 2501.00579 Green/Muschik/Linke

Conclusion

- Spins and bosons can be used to study chemical dynamics, nuclear physics, and particle physics
- Quantum advantage may be possible when the vibronic coupling is similar in energy scale to the electronic energy splitting
- System control allows us to include tunable dissipative effects

Reaction center complex

Brown Lab and MIST Lab Fall 2023

Catalyzing the Quantum Ecosystem

Duke Quantum Center

Thomas Barthel Kenneth Brown **Robert Calderbank** Marko Cetina Di Fang Jungsang Kim Alex Kozhanov Natalie Klco Norbert Linke Huanqian Loh Travis Nicholson Crystal Noel Chris Monroe Henry Pfister Yu Tong

W. Campbell and E.R. Hudson, Phys. Rev. Lett. 125, 120501 (2020) arXiv:1909.02668
M. Mills et al. Phys. Chem. Chem. Phys. 22, 24964 (2020) arXiv:2008.09201
L. Qi, E. C. Reed, B. Yu, and K. R. Brown, arXiv:2411.07137

	A _{SO}	B _e	ω_e	D _e	PDM	$10^{-3} \cdot T_e$	Λ-doublet splitting				4 K/300 K Population			
	(cm^{-1})	(cm^{-1})	(cm^{-1})	(eV)	(Debye)	(cm ⁻¹)	(MHz)				(%)			
							J = 3/2	5/2	7/2	9/2	J = 3/2	5/2	7/2	9/2
BeO ⁺	-117	1.44	1242	3.8	7.5	9.4	3.8	16	42	84	89/2.1	10/3.1	1/3.9	0/4.6
MgO ⁺	-130	0.53	718	2.3	8.9	7.3	0.19	0.84	2.1	4.3	54/0.8	32/1.1	11/1.5	3/1.8
CaO ⁺	-130	0.37	634	3.3	8.7	0.7	0.45	1.9	5.0	10	42/0.5	32/0.8	17/1.0	6/1.3
SrO ⁺	-147	0.31	659	4.2	7.5	0.4	0.16	0.67	1.7	3.5	0/0.1	0/0.1	0/0.1	0/0.1
BaO ⁺	-214	0.24	506	2.2	7.9	1.5	0.089	0.39	0.98	2.0	0/0	0/0	0/0	0/0
YbO+	-132	0.28	601	2.2	7.0	1.0	0.14	0.59	1.5	3.0	33/0.4	30/0.6	20/0.8	10/1.0
RaO ⁺	-228	0.20	451	3.3	7.7	0.3	0.081	0.35	0.89	1.8	25/0.3	26/0.5	21/0.6	14/0.8
BeS ⁺	-310	0.71	875	3.4	7.6	15.7	0.11	0.45	1.2	2.3	66/1.2	27/1.8	6/2.3	1/2.8
MgS ⁺	-303	0.25	469	2.0	9.2	12.9	0.0051	0.022	0.056	0.11	30/0.4	29/0.6	21/0.8	12/1.0
CaS ⁺	-299	0.15	390	4.0	11.3	5.0	0.0028	0.012	0.031	0.062	19/0.3	22/0.4	20/0.5	16/0.6
SrS ⁺	-316	0.12	423	3.1	8.7	0.3	0.0086	0.036	0.094	0.19	16/0.1	20/0.2	19/0.3	16/0.4
BaS ⁺	-273	0.08	291	3.3	9.1	2.5	0.00093	0.0040	0.010	0.021	11/0.1	14/0.2	15/0.2	15/0.3
YbS ⁺	-254	0.10	345	2.2	7.8	4.6	0.0013	0.0056	0.014	0.029	13/0.1	17/0.2	18/0.3	16/0.3
RaS ⁺	-405	0.07	266	4.5	9.4	2.7	0.00043	0.0018	0.0047	0.0094	10/0.1	13/0.1	14/0.2	14/0.2

Table 1 A list of dipole-phonon quantum logic (DPQL) candidates in electronic state ${}^{2}\Pi_{3/2}$. This table includes the spin-orbital coupling constant (A_{SO}), rotational constant (B_{e}), vibrational constant (ω_{e}), dissociation energy (D_{e}), permanent dipole moment (PDM), energy interval between two lowest electronic states (T_{e}), Λ -doublet splitting and population of several low-lying rotational states. The ground electronic state of all the species in this table is $X^{2}\Pi_{3/2}$, except for SrO⁺ and BaO⁺, whose ground state is $X^{2}\Sigma^{+}$ and the first excited state is $A^{2}\Pi_{3/2}$.

M. Mills et al. Phys. Chem. Chem. Phys. 22, 24964 (2020) arXiv:2008.09201

L. Qi, E. C. Reed, B. Yu, and K. R. Brown, arXiv:2411.07137

