A lattice field theory of quantum circuits

Neill Christian Warrington

MIT Center for Theoretical Physics

in collaboration with:

Josh Lin (CTP) Stephen Sorokanich (NIST) May Hays (EQuS) Julian Bender (CTP) Phiala Shanahan (CTP)

"Quantum Information Science on the Intersections of Nuclear and AMO Physics" January 15th 2025

An analogy:

 $\mathcal{L} = \bar{q}(i\partial - gA - m)q - \frac{1}{2}\mathrm{tr}\,G_{\mu\nu}G^{\mu\nu}$

An analogy:

Rajabzadeh et. al. Quantum 7, 1118 (2023).

Lattice field theory:

Restrict spacetime to a lattice with spacing a. 2. Write everything as path integrals.

 $\langle \mathcal{O} \rangle = \frac{\int DADq \, e^{-S(A,q)} \, \mathcal{O}(A,q)}{\int DADq \, e^{-S(A,q)}}$

 $= \langle \mathcal{O} \rangle_{\text{exact}} + O(a^n)$

Monte Carlo:

$\langle \mathcal{O} \rangle = \frac{\int DADq \, e^{-S(A,q)} \, \mathcal{O}(A,q)}{\int DADq \, e^{-S(A,q)}}$

$= \int DADq \ \frac{p(A,q)}{\mathcal{O}(A,q)} \mathcal{O}(A,q)$

where:

 $e^{-S(A,q)}$ $p(A,q) = \frac{1}{\int DADq \, e^{-S(A,q)}}$

Credit: Phiala Shanahan

Stochastic estimate:

 $\frac{1}{N}\sum_{i=1}^{\mathcal{D}}\mathcal{O}(A_i, q_i) = \langle \mathcal{O} \rangle + O(N^{-1/2})$

I. Tsioutsios, K. Serniak et. al. AIP Advances 10, 065120 (2020)

 $H = 4E_C n^2 - E_J \cos(\theta)$

where $[\theta, n] = i$

I. Tsioutsios, K. Serniak et. al. AIP Advances 10, 065120 (2020)

Note:

I. Tsioutsios, K. Serniak et. al. AIP Advances 10, 065120 (2020)

Qubits

Quantum Simulators Quantum computers

Gambetta et. al.

Somoroff et. al. PRL 130, 267001 (2023)

npj Quantum Information (2017)

Rosen et. al. Nature Physics 20 (2024)

Quantum sensors

Najera-Santos et. al. Phys. Rev. X 14, 011007 (2024)

Quantum amplifiers

(a) Josephson parametric amplifier (JPA)

(a) Josephson traveling wave parametric amplifier (JTWPA)

Krantz et. al. Applied Physics Reviews 6, 021318 (2019)

Circuit quantization:

(Devoret, Les Houches 1995)

position coordinate: θ_x

momentum coordinate: n_x

quantum condition: $[\theta_x, n_y] = i\delta_{xy}$

capacitor:
$$\Delta E \sim \frac{e^2}{2C}n^2$$

JJ: $\Delta E \sim -E_J \cos\theta$
inductor: $\Delta E \sim \frac{1}{2}E_L\theta^2$

Hamiltonian: $H = (2e)^2 n^T C^{-1} n + U(\theta)$

where

 $S = \Delta t \Big[\frac{1}{2} \Big(\frac{1}{2e} \Big)^2 \sum_{x,y,t} \frac{(\theta_{t+1,x} - \theta_{t,x})}{\Delta t} C_{xy} \frac{(\theta_{t+1,y} - \theta_{t,y})}{\Delta t} + \sum U(\vec{\theta_t}) \Big]$ x,y,t

Correlator method:

Correlators:
$$\langle \mathcal{O}(t)\mathcal{O}(0)\rangle = \frac{\int D\theta \ e^{-S}\mathcal{O}(t)\mathcal{O}(t)}{\int D\theta \ e^{-S}}$$

 $\lim_{\beta \to \infty} \langle \mathcal{O}(t) \mathcal{O}(0) \rangle \to \langle 0 | \mathcal{O}(t) \mathcal{O}(0) | 0 \rangle$ 1. Make it cold:

2. Fit: $\langle 0|\mathcal{O}(t)\mathcal{O}(0)|0\rangle = \sum e^{-t(E_m - E_0)} |\langle m|\mathcal{O}|0\rangle|^2 \longrightarrow e^{-\Delta E^* t} |\langle m^*|\mathcal{O}|0\rangle|^2$ m

Example:

 $H = \sum_{x=1}^{2} \left(4E_C \hat{n}_x^2 - E_J \cos\theta_x \right) - E_J^b \cos\left(\theta_1 + \theta_2 - \varphi_{\text{ext}}\right)$

$$\langle \mathcal{O}(t)\mathcal{O}(0)\rangle \longrightarrow e^{-\Delta E^*t} |\langle m^*|\mathcal{O}|0\rangle|^2$$

MC step

Example: $H = \sum_{x} 4E_C (n_x - n_{gx})^2 - E_J \cos(\theta_x) - E_J^b \cos(\theta_1 + \theta_2 - \varphi_{ext})$

PDE Solver

Lattice

Fluxonium:

Recent progress in transoms here:

<u>npj Quantum Information</u>

volume
10, Article number: 78 (2024)

 $5 \mu m$

	T2	anha
fluxonium	~1.0 ms	>100
transmon	~0.1 ms	5

Somoroff et al PRL 130, 267001 (2023), [arxiv:2106.11352]

anharmonicity: Oliver et. al. PRX 031035, Schoelkopf PRA 76 (2007)

Fluxonium:

$$H = (2e)^2 \sum_{xy} (n_x - n_{gx}) C_{xy}^{-1} (n_y - n_g)$$

Tunable parameters: $N, C^a, C^b, C^a_g, C^b_g, E^a_J, E^b_J$

Fabrication:
$$C = S_c A$$
 C^a ,
 $E_J = \frac{\Phi_0}{2\pi} j_c A$

Application:

 $H(\theta_1, ..., \theta_N) = \begin{cases} 4E_C n^2 + e^{-2} \end{bmatrix}$

$$+\frac{1}{2}E_L\varphi^2 - E_J\cos(\varphi - \varphi_{\text{ext}})\Big\} + \Delta H$$

Typical fabrication:

$$_{1} = \sqrt{8E^{a}_{C}E^{a}_{J}}$$

$$z = \pi^{-1} \sqrt{2E_C^a/E_J^a}$$

	$\hbar \omega_{ m pl}$ [h GHz]	z	N	source	
m A	8.18	0.06	40	Manucharyan	et. al. Science 326, 113-116
m B	13.4	0.09	43	Manucharyan	et. al. Phys. Rev. B 85 , 02452
m C	17.4	0.07	43	Manucharyan	et. al. Phys. Rev. B 85 , 02452
m D	N/A	N/A	102	Ding et. al. Phy	/s. Rev. X 13, 031035 (2023)
m E	N/A	N/A	102	Ding et. al. Phy	/s. Rev. X 13, 031035 (2023)

16 (2009) 4521 (2012) 4521 (2012)

Ν

What are "safe" directions in parameter space?

2. What is out there?

Coherence:

$$H = (2e)^{2} \sum_{xy} (n_{x} - n_{gx}) C_{xy}^{-1} (n_{y} - n_{gy}) - E_{J}^{a} \sum_{x} \cos\theta_{x} - E_{J}^{b} \cos(\sum_{x} \theta_{x} - E_{J}^{b}) + E$$

Charge noise in array can limit coherence

Pechenezhskiy et. al. Nature 585, 368 (2020)

Coherence:

Outstanding questions:

1.

Dependence on
$$z = \pi^{-1} \sqrt{2E_C^a/E_J^a}$$
 ?

2. Dependence on Cg?

Coherence:

Outstanding questions:

1. Dependence on $z = \pi^{-1} \sqrt{2E_C^a/E_J^a}$?

2. Dependence on Cg?

Dependence on z:

N = 43 device

Manucharyan et. al. Phys. Rev. B 85, 024521 (2012)

 $\hbar \omega_{
m pl} = 13.4 \text{ h GHz}$ z = 0.09 $\begin{bmatrix} \mathbf{x} & 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{-2} \\ 10^{-3} \\ 10^{-3} \\ 10^{-5} \\ 10^{-6} \\ 10^{-7} \\ 10^{-8} \end{bmatrix}$

Tensor network simulations @ N=40

di Paolo et. al. npj Quantum Information volume 7, 11 (2021)

Parameters: CJb=7.5 fF, EJb = 8.9 h GHz, $\omega_p/2\pi = 12.5$ h GHz, and Cg = 0

Lattice simulation:

Small junction: $C_b = 7.5 \text{ fF}, E_J^b = 8.9 \text{ h GHz}$

Array:

N=40

$$z = 0.14, \ \hbar \omega_{pl} = 12.5 \ h \ GHz$$

 $C_g = 0 \ fF$

Sims:

24 hours

- 1 node with 8 a100 GPUs
- 3.7 million measurements (that's a lot)

Lattice simulation:

Small junction: $C_b = 7.5 \text{ fF}, E_I^b = 8.9 \text{ h GHz}$

Array: N=40 $z = 0.14, \ \hbar \omega_{pl} = 12.5 \ h \ GHz$ $C_{o} = 0 \, \mathrm{fF}$

Sims:

24 hours

- 1 node with 8 a100 GPUs
- 3.7 million measurements (that's a lot)

$$-f(\Delta t) = a + b\Delta t + c\Delta t^2$$

- Total error budget is 3%

Lattice simulation:

Gate charges produce a topological term:

$$S(n_g) - S(0) = i \int_0^\beta dt \left(\frac{1}{2e}\right)^2 D^T \dot{\theta} = 2\pi$$

Theta angle produces a topological term:

$$S(\theta) - S(0) = i \frac{g^2}{32\pi^2} \int d^4 x \, \mathrm{tr} F_{\mu\nu} \widetilde{F}^{\mu\nu}$$

(Note both are imaginary)

$\pi i n_a^T N_{\text{instanton}}, \quad N_{\text{instanton}} := \theta(t = \beta) - \theta(t = 0)$

 $^{\iota\nu} = i\theta Q_{\rm top}$

Izubuchi et. al PoS Lattice [0802.1470] (2008)

Fluxonium

Imachi Prog.Theor.Phys. 115 (2006) 931–949

Lattice QCD with θ term

Fluxonium

Gao et. al. Phys. Rev. D 109, 074509

Lattice QCD with θ term

Thank you

Backup slides

142 lines

Fluxonium

Lattice QCD with θ term

Continuum limit:

One variable model:

 $H = (2e)^2 n^T C^{-1} n + U(\theta)$

$= H(\varphi) + \delta H(\varphi, \xi)$

where

 $H(\varphi) = -4E_C \frac{\partial^2}{\partial \varphi^2} + \frac{1}{2}E_L \varphi^2$ $-E_J \cos(\varphi - \varphi_{\text{ext}})$

An analogy:

Continuum extrapolation

ALPHA Collaboration, JHEP 0212, 007 (2002)

Warrington et. al. PRL 126, 132701 (2021)