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Overview

• Superconducting calorimeters background
• Transition-edge sensor (TES) background

• Kinetic inductance detector (KID) and thermal variant (TKID) background

• CP-TKID development and applications
• Setting groundwork for new instrumentation at the NIST Center for Neutron 

Research (NCNR) – precision measurements of fundamental symmetries

• Using current devices for spectroscopic measurements of the ionizing 
radiation background in quantum circuit substrates
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Transition-edge sensor (TES) 
background



Why superconducting calorimeters?

• Combines the collection efficiency 
of energy dispersive detectors 
such as CCDs and SDDs with the 
energy resolving power of 
wavelength dispersive techniques 
such as crystals and gratings

• Broadband spectroscopy

• Low energy detection thresholds
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Future 
superconducting 

calorimeter arrays
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Cryogenic microcalorimeter

Temperature 
~100 mK

Δ𝐸 ~ 4𝑘𝐵𝑇2𝐶
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TES microcalorimeter

Absorber coupled to TES to 
detect high energy events, 
decoupled optimizations!
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Readout electronics and multiplexing
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Adapted from Szypryt et al., 2019, https://doi.org/10.1063/1.5116717

Typically read out and multiplexed using superconducting 
quantum interference devices (SQUIDs)

Reprinted from Doriese et al., 2016, 
https://doi.org/10.1007/s10909-

015-1373-z

Reprinted from Mates et al., 2017, 
https://doi.org/10.1063/1.4986222

μMUX

TDM

https://doi.org/10.1063/1.5116717
https://doi.org/10.1007/s10909-015-1373-z
https://doi.org/10.1007/s10909-015-1373-z
https://doi.org/10.1063/1.4986222
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Kinetic inductance detector (KID) 
background



Kinetic inductance detector (KID) background
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Adapted from Day et al., 2003, https://doi.org/10.1038/nature02037

Deposits with energy 
>2Δ break Cooper pairs 
in superconductor and 
generate quasiparticles

Thin-film superconductor 
patterned into LC resonator

Broken Cooper 
pairs result in 
increased sheet 
impedance (kinetic 
inductance)

https://doi.org/10.1038/nature02037


KID background
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Adapted from Day et al., 2003, https://doi.org/10.1038/nature02037

Changing kinetic inductance 
temporarily shifts resonant frequency

Shift proportional 
to deposited energy

In practice, measure 
phase shift from fixed 
frequency probe tone

https://doi.org/10.1038/nature02037


KID readout
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Each KID device 
tuned to unique 
resonant frequency

Many (on order 1000) KIDs can be coupled to 
and read out through a common microwave 
transmission line

Reprinted from Szypryt et al., 2017, 
https://doi.org/10.1364/OE.25.025894

https://doi.org/10.1364/OE.25.025894


Thermal kinetic inductance detector (TKID)
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• KID coupled to dedicated absorber
• Combines thermal properties of TES 

calorimeter with ease of multiplexing 
of KID

• Enables separate optimization of 
detector and readout properties

• Increased stopping power to high 
energy events

• High dynamic range / linear response 
across broad energy range

Adapted from Ulbricht et al., 2015, 
https://doi.org/10.1063/1.4923096

https://doi.org/10.1063/1.4923096
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Charged-particle thermal kinetic 
inductance detector (CP-TKID) 
development and applications
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CP-TKIDs for precision 
measurements of fundamental 

symmetries



Motivation
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Observable Physics 

Neutron lifetime (𝜏𝑛) Helium abundance in Big Bang Nucleosynthesis

Neutron lifetime (𝜏𝑛),
electron-antineutrino correlation (a),
Beta Decay Asymmetry (A)

CKM Unitarity
Parity violation
Vector-axial vector currents

Fierz interference (b) BSM Scalar/Tensor contributions to the weak 
interaction

Time-reversal violating parameter (D) T-violation 
Right-handed neutrinos 

Neutron Beta Decay, the simplest example of the hadronic weak interaction, is an ideal 
laboratory for testing the Standard Model and searching for new physics 



Measurement challenges/opportunities

High precision measurements require high statistics, but limited by 
neutron sources, long neutron lifetimes

➢Large-area detectors with high solid angle coverage

Electron energies ~1 MeV and proton energies ~1 keV, state of the art 
pixelated silicon detectors limited to few keV energy resolution

➢Detector technology with improved energy resolution and threshold 
energy limitations

Electron energy spectrum further degraded due to backscattering

➢Detectors that can support backscatter suppression techniques
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CP-TKID design and fabrication
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Utilizes more macroscopic absorber,  optimized 
for charged-particle and gamma-ray detection 
in the 10s of keV to few MeV range

Si Substrate

TiN Superconductor ~200 nm

500 μm, 
1500 μm

Relatively simple fabrication with single patterned 
metal layer (TiN), DRIE to define absorber island



CP-TKID: active area and energy resolution
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Calorimeter ‘thermal’ 
energy resolution limit, 
can achieve resolutions 
better than part per 
thousand:

Δ𝐸 ~ 4𝑘𝐵𝑇2𝐶

Energy resolution targets:
Electrons (1 MeV): ΔE < 100 eV
Protons (1 keV): ΔE < 10 eV



CP-TKID: backscatter suppression
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Improving CP-TKID energy resolution

Historically, achieved TKID energy 
resolution has been considerably 
worse than theoretical limits. 
Potential causes:

• Position-dependent response

• ‘Gain’ drift (thermal or magnetic)

• Athermal effects

• Unique pulse processing 
complexities

• Other effects?
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Developed TKID model starting 
with work of Lindeman, 2014, 
https://doi.org/10.1063/1.4890018

Coupled differential equations governing TKID response 

https://doi.org/10.1063/1.4890018


CP-TKID response model

• Lindeman 2014 model assumed negligible frequency 
detuning between resonance and probe tune, small signals

• This model did not sufficiently capture observed pulse 
shapes

• Expanded model for nonzero detuning:
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CP-TKID response model
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Data Model

• Expanded TKID model 
still work in progress, 
but already shows 
good qualitative 
agreement with data

• Work led by graduate 
student, Ian Fogarty 
Florang!



G4CMP simulations
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Example simulation details:
• Phonons generated at center of CP-TKID 

absorber
• Phonons detected at surface level 

superconducting film shown as yellow circles.
• Tracks showing different phonon propagation 

modes:
• Slow transverse
• Fast transverse
• Longitudinal

Phonon transport simulations used to 
guide device design, e.g. by revealing 
position-dependent response

G4CMP work led by 
summer undergraduate 
student, Robbie Harper!

Exploring experimental 
verification using 
cryogenic motion stage
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CP-TKIDs for ionizing radiation 
background measurements



Motivation
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Adapted from Arule et al., 2019, 
https://doi.org/10.1038/s41586-019-1666-5

Adapted from McEwan et al., 2022, 
https://doi.org/10.1038/s41567-021-01432-8

Correlated error bursts lasting 
multiple milliseconds

Google Quantum AI Sycamore chip

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41567-021-01432-8


Motivation
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Gamma rays

Cosmic rays

Image: Pierre Auger Observatory Image: Johannes Knapp (DESY)

238U 232Th40K



Experimental setup
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Results recently reported in Fowler et al., 2024, 
https://doi.org/10.1103/PRXQuantum.5.040323

https://doi.org/10.1103/PRXQuantum.5.040323


Linearity across broad energy range
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1,000 pulse averages

Calibrated using Gd153 
source + laser diode with 

controlled variable 
attenuator

Multiple nonlinearities:
• 𝐶 ∝ 𝑇3

• 𝑛QP ∝ 𝑇exp −Δ/𝑘𝐵𝑇

• 𝛿𝐿 ∝ −𝛿𝑛QP

• 𝑓0 ∝ 1/ 𝐿𝐶

All combined, expect <20% 
nonlinearity up to several MeV, 
confirmed experimentally



Measured spectra
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Collected cosmic + terrestrial 
ionizing radiation background data
• Two TKID devices: 1500 μm and 

500 μm thicknesses
• >100 hours of data collected 

with each device
• Data spans 6 orders of 

magnitude in event rate
• Range of energies collected 

spans 40 keV to 8 MeV
• Median energy of 120 keV 

(1500 μm thick device)



Gamma-ray model
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TKID

Above
floor

Isolated
radionuclides

Simulations performed in 2 
steps:

1) GEANT4: Distributed 
source in the concrete 
floor emits upwards. 

• Study particle types, 
and E and θ 
distribution

2) GEANT4: Transport 
through the silicon sensor 
substrate.

• Record energy 
deposited in substrate.

• Do this segregated by 
particle type (e+, e−, γ)

GEANT4 simulations 
controlled by TOPAS

Additional modeling details in Fowler et al., 2024, 
https://doi.org/10.1109/TASC.2024.3512523

10.1109/TASC.2024.3512523


Cosmic-ray model
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Simulations in 3 steps

1) PARMA generates {k, E, θ, φ} values

2) GEANT4: Pass through large 
concrete ceiling and thin aluminum 
cryostat.

3) GEANT4: Transport through the 
silicon sensor substrate.

• Record energy deposited in 
substrate.

• Do this segregated by particle 
type (µ±, e±, γ, p, n)

Ceiling effects include:
• n  p
• γ  e± 
• µ± → e-
• Any → γ
• Screening all species



Comparison of data to model
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Key findings / lessons learned:
• Data matches model to better than 

10%, despite large range of event 
rates and deposited energies

• Total absorbed power and gamma-ray 
rate roughly proportional to thickness

• Cosmic-ray rate largely independent 
of thickness

• Average event energy of 215 (293) 
keV expected for 500 (1500) μm thick 
substrates

• Can partially reduce backgrounds 
through underground environment, 
low-activity building materials

• High-energy tail observed up to to 
multiple MeV, potentially problematic 
for on-chip mitigation techniques 
(e.g. gap engineering)

• Results can be extended to other 
laboratories/environments with some 
straightforward corrections

TKID devices likely compatible with superconducting 
qubit designs for future extensions of this work!



Stacked CP-TKID progress

34

Beginning early design work 
of stacked CP-TKID geometry

Performing preliminary stacked CP-TKID 
measurements using currently fabricated devices

Ionizing radiation background 
coincident event spectra



Conclusions
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• The CP-TKID can be an extremely useful tool in quantum information science 
and nuclear physics applications

• Application 1: developing CP-TKIDs for studies of fundamental symmetries – 
aiming to improve energy resolution, active area, and background suppression 
over current state-of-the-art.
➢ Quantum devices for nuclear physics

• Application 2: measured ionizing radiation background using a CP-TKID as a 
proxy for a quantum circuit + substrate, good agreement between data and 
model with zero free parameters
➢ Quantum devices + nuclear physics for quantum information science

https://www.nist.gov/programs-projects/kinetic-inductance-spectrophotometry
https://www.nist.gov/programs-projects/kinetic-inductance-spectrophotometry
mailto:paul.szypryt@nist.gov
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