

Applications of quantum calorimetry in nuclear physics Paul Szypryt (paul.szypryt@nist.gov)

Quantum Information Science on the Intersections of Nuclear and AMO Physics

January 14, 2025

Team members

Student Postdoctoral Fellow

Overview

- Superconducting calorimeters background
	- Transition-edge sensor (TES) background
	- Kinetic inductance detector (KID) and thermal variant (TKID) background
- CP-TKID development and applications
	- Setting groundwork for new instrumentation at the NIST Center for Neutron Research (NCNR) – precision measurements of fundamental symmetries
	- Using current devices for spectroscopic measurements of the ionizing radiation background in quantum circuit substrates

Transition-edge sensor (TES) background

Why superconducting calorimeters?

- Combines the collection efficiency of energy dispersive detectors such as CCDs and SDDs with the energy resolving power of wavelength dispersive techniques such as crystals and gratings
- Broadband spectroscopy
- Low energy detection thresholds

resolving power, $E/\Delta E$

University of Colorado Boulder

Cryogenic microcalorimeter

TES microcalorimeter

Readout electronics and multiplexing

MUX
Chips

 $1 in$

Reprinted from Doriese et al., 2016, [https://doi.org/10.1007/s10909-](https://doi.org/10.1007/s10909-015-1373-z) [015-1373-z](https://doi.org/10.1007/s10909-015-1373-z)

Typically read out and multiplexed using superconducting quantum interference devices (SQUIDs)

Adapted from Szypryt et al., 2019,<https://doi.org/10.1063/1.5116717>

Reprinted from Mates et al., 2017, <https://doi.org/10.1063/1.4986222>

Interface
Chips

NIST

FES Array

Collimator

Kinetic inductance detector (KID) background

Kinetic inductance detector (KID) background

Adapted from Day et al., 2003,<https://doi.org/10.1038/nature02037>

KID background

Adapted from Day et al., 2003, <https://doi.org/10.1038/nature02037>

University of Colorado Boulder

Reprinted from Szypryt et al., 2017, <https://doi.org/10.1364/OE.25.025894>

Many (on order 1000) KIDs can be coupled to and read out through a common microwave transmission line

N

Thermal kinetic inductance detector (TKID)

- KID coupled to dedicated absorber
	- Combines thermal properties of TES calorimeter with ease of multiplexing of KID
	- Enables separate optimization of detector and readout properties
	- Increased stopping power to high energy events
	- High dynamic range / linear response across broad energy range

Adapted from Ulbricht et al., 2015, <https://doi.org/10.1063/1.4923096>

Charged-particle thermal kinetic inductance detector (CP-TKID) development and applications

CP-TKIDs for precision measurements of fundamental symmetries

Motivation

Neutron Beta Decay, the simplest example of the hadronic weak interaction, is an ideal laboratory for testing the Standard Model and searching for new physics

$$
\frac{d\Gamma}{dE_e d\Omega_e d\Omega_v} \propto g_\nu^2 (1+3\lambda^2) p_e E_e (E_0-E_e)^2 \times \left[1+a\frac{\vec{p}_e\cdot\vec{p}_\nu}{E_e E_\nu}+b\frac{m_e}{E_e}+\langle\vec{\sigma_n}\rangle\cdot \left(A\frac{\vec{p}_e}{E_e}+B\frac{\vec{p}_\nu}{E_\nu}+D\frac{\vec{p}_e\times\vec{p}_\nu}{E_e E_\nu}\right)\right]
$$

Measurement challenges/opportunities

High precision measurements require high statistics, but limited by neutron sources, long neutron lifetimes

➢Large-area detectors with high solid angle coverage

Electron energies \sim 1 MeV and proton energies \sim 1 keV, state of the art pixelated silicon detectors limited to few keV energy resolution

- ➢Detector technology with improved energy resolution and threshold energy limitations
- Electron energy spectrum further degraded due to backscattering

➢Detectors that can support backscatter suppression techniques

CP-TKID design and fabrication

Utilizes more macroscopic absorber, optimized for charged-particle and gamma-ray detection in the 10s of keV to few MeV range

Relatively simple fabrication with single patterned metal layer (TiN), DRIE to define absorber island

CP-TKID: active area and energy resolution

Energy resolution targets: Electrons (1 MeV): ΔE < 100 eV Protons (1 keV): ΔE < 10 eV

better than part per thousand:

 $\Delta E \sim \sqrt{4k_B T^2 C}$

CP-TKID: backscatter suppression

Improving CP-TKID energy resolution

Historically, achieved TKID energy resolution has been considerably worse than theoretical limits. Potential causes:

- Position-dependent response
- 'Gain' drift (thermal or magnetic)
- Athermal effects
- Unique pulse processing complexities
- Other effects?

Developed TKID model starting with work of Lindeman, 2014, <https://doi.org/10.1063/1.4890018>

$$
\frac{dr}{dt} = -\left(\frac{\omega_0}{2Q} + \frac{\omega_0 \beta_A}{2Q_i}\right) r - \left(\frac{\omega_0 \alpha_A}{T_0 Q_i}\right) T
$$
\n
$$
\frac{d\theta}{dt} = \frac{+\omega_0 \beta_\phi}{2Q_i} r - \left(\frac{\omega_0}{2Q}\right) \theta + \left(\frac{\omega_0 \alpha_\phi}{T_0 Q_i}\right) T
$$
\n
$$
\frac{dT}{dt} = +\left(\frac{P_0}{C} \left(1 + \frac{\beta_A}{2}\right)\right) r + \left(\frac{P_0 \alpha_A}{CT_0} - \frac{G}{C}\right) T
$$

Coupled differential equations governing TKID response

CP-TKID response model

- Lindeman 2014 model assumed negligible frequency detuning between resonance and probe tune, small signals
- \bullet This n shape
- Expar

using between resonance and probe tune, small signals

\nis model did not sufficiently capture observed pulse

\nbased model for nonzero detuning:

\n
$$
= -\left(\frac{\omega_0}{2Q} + \frac{\omega_0(\beta_A - 2Qx\beta_{\phi})}{2(1 + 4Q^2x^2)Q_i}\right)r - \left(\omega_0x - \frac{\omega_0Qx(\beta_A - 2Qx\beta_{\phi})}{(1 + 4Q^2x^2)Q_i}\right)\theta - \left(\frac{\omega_0\alpha_A - 2\omega_0Qx\alpha_{\phi}}{(1 + 4Q^2x^2)Q_iT_0}\right)T
$$
\n
$$
= +\left(\omega_0x + \frac{\omega_0(2Qx\beta_A + \beta_{\phi})}{2(1 + 4Q^2x^2)Q_i}\right)r - \left(\frac{\omega_0}{2Q} + \frac{\omega_0Qx(2Qx\beta_A + \beta_{\phi})}{(1 + 4Q^2x^2)Q_i}\right)\theta + \left(\frac{2\omega_0Qx\alpha_A + \omega_0\alpha_{\phi}}{(1 + 4Q^2x^2)Q_iT_0}\right)T
$$
\n
$$
= +\left(\frac{P_0}{C}\left(1 + \frac{\beta_A}{2}\right)\right)r - \left(\frac{P_0\alpha}{C}(2 + \beta_A)\right)\theta + \left(\frac{P_0\alpha_A}{CT_0} - \frac{G}{C}\right)T
$$

Cu device box

TiN inductor

Si absorber/bulk substrate

 dr

 dt

 $d\theta$

 dt

 dT

 dt

CP-TKID response model

Data Model

- Expanded TKID model still work in progress, but already shows good qualitative agreement with data
- Work led by graduate student, Ian Fogarty Florang!

G4CMP simulations

Phonon transport simulations used to guide device design, e.g. by revealing position-dependent response

Example simulation details:

- Phonons generated at center of CP-TKID absorber
- Phonons detected at surface level superconducting film shown as yellow circles.
- Tracks showing different phonon propagation modes:
	- Slow transverse
	- Fast transverse
	- **Longitudinal**

CP-TKIDs for ionizing radiation background measurements

Correlated error bursts lasting multiple milliseconds

Adapted from McEwan et al., 2022, <https://doi.org/10.1038/s41567-021-01432-8>

Motivation

Image: Pierre Auger Observatory **Image: Johannes Knapp (DESY)**

h University of Colorado **Boulder**

N

Linearity across broad energy range

Multiple nonlinearities:

- $C \propto T^3$
- $n_{\text{QP}} \propto \sqrt{T} \exp(-\Delta/k_B T)$
- $\delta L \propto -\delta n_{\rm OP}$
- $f_0 \propto 1/\sqrt{LC}$

All combined, expect <20% nonlinearity up to several MeV, confirmed experimentally

Measured spectra

Collected cosmic + terrestrial ionizing radiation background data

- Two TKID devices: 1500 μm and 500 μm thicknesses
- >100 hours of data collected with each device
- Data spans 6 orders of magnitude in event rate
- Range of energies collected spans 40 keV to 8 MeV
- Median energy of 120 keV (1500 μm thick device)

Gamma-ray model

GEANT4 simulations

Additional modeling details in Fowler et al., 2024, [https://doi.org/10.1109/TASC.2024.3512523](10.1109/TASC.2024.3512523)

University of Colorado Boulder

Simulations performed in 2

- 1) GEANT4: Distributed source in the concrete floor emits upwards.
	- Study particle types, and E and θ distribution
- 2) GEANT4: Transport through the silicon sensor substrate.
	- Record energy deposited in substrate.
	- Do this segregated by particle type (e⁺, e⁻, γ)

 2.5

1500 µm

 2.0

 2.5

500 um

 3.0

 10^{3}

 10^{2}

 keV^{-1})

rate (s^{-1}) 10^{-5}

φ 10^{-6}

subst 10^{-7}

ູ 10^{-8}

 0.0

 10^{-3}

 10^{-4}

 $232Th$ Total

 1.0

 0.5

 0.0

 1.0

Energy deposited in substrate (MeV)

 1.5

y-ray Energy (MeV)

 2.0

 $232Th$

 1.5

 0.5

Above floor

Isolated

Cosmic-ray model

Simulations in 3 steps

- 1) PARMA generates {k, *E*, θ, φ} values
- 2) GEANT4: Pass through large concrete ceiling and thin aluminum cryostat.
- 3) GEANT4: Transport through the silicon sensor substrate.
	- Record energy deposited in substrate.
	- Do this segregated by particle type (μ[±], e[±], γ, p, n)

Ceiling

Nal

- $\mu \pm \rightarrow e$ -
- Any \rightarrow γ
- Screening all species

Comparison of data to model

TKID devices likely compatible with superconducting qubit designs for future extensions of this work!

Key findings / lessons learned:

- Data matches model to better than 10%, despite large range of event rates and deposited energies
- Total absorbed power and gamma-ray rate roughly proportional to thickness
- Cosmic-ray rate largely independent of thickness
- Average event energy of 215 (293) keV expected for 500 (1500) μm thick substrates
- Can partially reduce backgrounds through underground environment, low-activity building materials
- High-energy tail observed up to to multiple MeV, potentially problematic for on-chip mitigation techniques (e.g. gap engineering)
- Results can be extended to other laboratories/environments with some straightforward corrections

Stacked CP-TKID progress

Beginning early design work of stacked CP-TKID geometry Performing preliminary stacked CP-TKID measurements using currently fabricated devices

Ionizing radiation background coincident event spectra

Conclusions

- The CP-TKID can be an extremely useful tool in quantum information science and nuclear physics applications
- Application 1: developing CP-TKIDs for studies of fundamental symmetries aiming to improve energy resolution, active area, and background suppression over current state-of-the-art.
	- \triangleright Quantum devices for nuclear physics
- Application 2: measured ionizing radiation background using a CP-TKID as a proxy for a quantum circuit + substrate, good agreement between data and model with zero free parameters
	- \triangleright Quantum devices + nuclear physics for quantum information science

Students and postdocs interested in this work should visit [https://www.nist.gov/programs-projects/kinetic-inductance](https://www.nist.gov/programs-projects/kinetic-inductance-spectrophotometry)[spectrophotometry](https://www.nist.gov/programs-projects/kinetic-inductance-spectrophotometry) or contact Paul Szypryt at [paul.szypryt@nist.gov.](mailto:paul.szypryt@nist.gov)

We gratefully acknowledge support from the U.S. Department of Energy (DOE). This work was supported by the DOE Office of Science, Office of Nuclear Physics, under Awards No. DE-SC0021415 and No. DE-SC0023682.

