Analog Quantum Simulation of String Breaking and Meson Scattering

Theory: Alessio Lerose, Federica Surace, Brayden Wave, Ron Belyansky, Alex Schuckert, Zohreh Davoudi, Alexey Gorshkov **Experimental:** Arinjoy De, Henry Luo, Will Morong, Kate Collins, Or Katz, Chris Monroe

Observation of string-breaking dynamics in a quantum simulator. arXiv:2410.13815 (2024) Simulating meson scattering on spin quantum simulators. arXiv:2403.07061 (2024). String-Breaking Dynamics in Quantum Adiabatic and Diabatic Processes. arXiv:2411.10652 (2024) Crossing the string-breaking discontinuous transition in a quantum simulator, work in progress (2025)

Elizabeth R. Bennewitz - University of Maryland, College Park January 15, 2025

Progress towards quantum simulation of fundamental forces

Many static and dynamical properties of matter arise from underlying fundamental quantum fields in the Standard Model that are hard to simulate classically

Near-term work (*this work):

- Given today's (or tomorrow's) experimental resources, what can we do?
- Use simple 1+1D spin models that share salient features with gauge theories
- Real-time dynamics, Non-equilibrium physics
- Quantum-many body physics

This work: Spin systems with confinement

Far-term work:

- Simulating gauge theories in the Standard Model or nuclear effective field theories on fault-tolerant quantum computers
- Algorithm development and resource estimation

Image: C. Bauer, Z.Davoudi, N, Klco, M. J. Savage, Nat. Revs. Phys. 5 (2023)

Quark Confinement

Strong force confines color changes, i.e. quarks and gluons, into mesons and baryons

Quark Confinement

Strong force confines color changes, i.e. quarks and gluons, into mesons and baryons

Simulating Confinement on Quantum Simulators

An analogous form of confinement has been shown for spin systems where kinks are contined 000000000

Message: Spin Hamiltonians in 1+1D exhibit confined excitations and are simpler testing grounds for quantumsimulation studies in the presence of confining forces

De, A., Lerose, A., Luo, D., Surace, A., Schuckerb, A., Bennewitz, E.R., Ware, B., Morong, W., Collins, K.S., Davoudi, Z. and Gorshkov, A.V., 2024. Observation of string-breaking dynamics in a quantum simulator. *arXiv:2410.13815*.

deally, need a semi-infinite chain to isolate the string

In practice, consider N dynamical spins and an infinite number of fictitious spins on the left and right

> \ket{y} **Q**: For h > 0 and g > 0when does the string break?

 $h \equiv \text{string tension}$

 $J_{ij} \approx Je^{-0.78(|i-j|-1)}$

Phase Diagram:

- -N = 13 dynamical spins
- 1st order phase transition

Dynamical String Breaking

(Coupling strength)

g/J

Schwinger mechanism predicts charge-pair formation initiating in the bulk Jt

Our results demonstrate charge-pair formation initiating at the edges propagating into the bulk

For vanishing or weak string tension, charge-pairs perform coherent oscillations at the edge

De, A., Lerose, A., Luo, D., Surace, A., Schuckert, A., Bennewitz, E.R., Ware, B., Morong, W., Collins, K.S., Davoudi, Z. and Gorshkov, A.V., 2024. Observation of string-breaking dynamics in a quantum simulator. arXiv preprint

Bennewitz, Elizabeth R., et al. "Simulating meson scattering on spin quantum simulators." arXiv preprint arXiv:2403.07061 (2024).

Bound excitations in the

$$H = -\sum_{ij} J_{ij} \sigma_i^x \sigma_j^x - h \sum_i \sigma_i^x - g \sum_i \sigma_i^x - g \sum_i \sigma_i^x \sigma_i^x - g \sum$$

Want to scatter mesons, bound two-kield states

Power Law Model ($1 < \alpha < 2$): Exponential Decay

- $V(\infty) = \infty$
- All two-kink states are bound for an infinitesimal transverse field
- Infinitesimal transverse field unbinds pairs of kinks for some ℓ_c
- Free Kinks

Bound excitations in the Ising Model

$$H = -\sum_{ij} J_{ij} \sigma_i^x \sigma_j^x - h \sum_i \sigma_i^x - g \sum_i \sigma_i^z$$

Beyond infinitesimal g

• 'Dressed' two-kink states are adiabatically connected to their 'bare' analog, i.e.

$$\alpha = 1.5$$

$$\begin{array}{c} \alpha = 1.5 \\ 12 \\ -12 \\ -11 \\ -10 \\ -11 \\ -10 \\ -11 \\ -10 \\ -11 \\ -10 \\ -11 \\ -10 \\ -11 \\ -10 \\ -11 \\ -10 \\ -11 \\ -10 \\ -11 \\ -10 \\ -11 \\ -10$$

Meson Scattering Proposal

Meson Scattering for Power Law Coupling ($\alpha = 1.5$)

Time $J_0 t$

Scatter 1-mesons for $0.5 \le h_7 \le 2$

- Only observe elastic scattering
- This model has stronger confinement

150

- <u>1.0</u> -0.9
- -0.8
- -0.7
- -0.6
- -0.5
- -0.4
- -0.3
- -0.2
- -0.1

Meson Scattering with Ex

Scatter 1-meson $0.5 \le g \le 1.2$

```
For g \lessapprox 0.7
```

• Primarily elastic scattering

For g > 0.75

- Elastic Scattering \bullet
- Outgoing free kinks

60 40

Time $J_0 t$

-0.9

Summary and Outlook

- Advancing quantum technologies offer are exciting tools to explore realtime dynamics and non-equilibrium of high energy and nuclear physics
- Spin models offer simple and experimentally realizable toy models of bound excitations in the presence of confining forces
- Utilizing state-of-the-art control on trapped-ion simulators, we demonstrate dynamical string breaking unveiling a new string-breaking phenomenon
- We address the limiting experimental challenge of wave packet preparation by demonstrating two concrete protocols for meson wave packet preparations
- Demonstrate numerical evidence for prominent inelastic particle produces in the form of unbound kinks with a distinct scattering signature

Thank you!

Alessio Lerose*

Arinjoy De*

Henry Luo

WillKateMorongCollinsSee our additional papers:

Or Katz

Chris Monroe

Surace, Federica Maria, et al. "String-Breaking Dynamics in Quantum Adiabatic and Diabatic Processes." arXiv preprint arXiv:2411.10652 (2024).

Luo, D, et. al. Crossing the string-breaking discontinuous transition in a quantum simulator, work in progress (2025)

Federica Surace* Sch

Alex Schuckert

Ron Belyansky

Zohreh Davoudi

Alexey V. Gorshkov

Scheme 2: Quantum Bus Mediated State Preparation

Transfer an excitation in the quantum bus register to the spin regsiter

ik

Motional Bus Excitaiton

For example, the (anti-)Jaynes-Cumming Hamiltonian describes a bosonic-mode bus coupled to spins

$$\delta_{k-1} = \omega_{k-1} - \nu \qquad (a) \qquad (b) \qquad (b) \qquad (b) \qquad (c) \qquad (c)$$

Image: O. Katz and C. Monroe, Phys. Rev. Lett. 131, 033604 (2023)

Gaussian wave packet state preparation

$$|\psi_{\text{free}}^{\text{in}}\rangle = \frac{1}{\mathcal{N}} \sum_{i=1}^{N} \psi_i^g(x_0, k_0) | \dots \uparrow \downarrow$$

$$|\psi_{\text{int}}^{\text{in}}\rangle = U_r(t_r) |\psi_{\text{free}}^{\text{in}}\rangle$$

