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Outline

• Quantum Machine Learning for Particle Physics

• Quantum Deep Learning
• QCNN, QGCNN, QLSTM, QRL

• Quantum Noise and Related Learning
• Quantum Architecture Search
• Differential Privacy, Federated Learning
• qGradCam, Transfer Learning
• Learning to Measure QNN

• Quantum Computing Forecast



Quantum Machine Learning for Particle Physics
• Particle Physics (PP) pose an extreme scale data challenges

• PP data (DUNE, LHC, e-RHIC, etc) are extremely sparse

• Increased computational complexities (i.e. HL-LHC to
reconstruction using MC simulation)

• Our project targets to develop the best quantum deep 
learning algorithms for event detection and reconstruction 
on PP data challenges (top) Neutrino interaction events are 

characterized by extremely sparse data, 
as can be seen in the above 3-D image 
reconstruction from 2-D measurements.

(left) The ATLAS trigger track reconstruction time (quadratic time 
complexity) for the beamspot reconstruction algorithm for 14 TeV 
𝒕�̅� Monte Carlo simulated with 46, 69 and 138 interactions per 
bunch crossing, measured on a 2.4 GHz Intel Xeon CPU.



Quantum ML

4

Quantum CNN Quantum LSTM Quantum Graph NN

Quantum Tensor Network Quantum Architecture Search 
with Continual Learning

Quantum Federated Learning



Variational Quantum Circuits (VQC)
Hybrid paradigm to leverage both quantum and 

classical computing.

Certain computations are carried out on quantum 
computers.

Others (e.g., calculating new parameters) are 
done on classical computers.



Quantum CNN Learning for High Energy 
Physics Data Analytics
Motivation: Various experimentation/simulations have 

spatial correlations, but existing quantum classifiers 
cannot capture spatial relationships well.

Approach: 
Adapt convolutional neural network (CNN) algorithm, 

one of the most popular deep learning architectures 
in computer vision, to a Variational Quantum 
Classifier (VQC).

Demonstrated on a Deep Underground Neutrino 
Experiment dataset.

Impact: Quantum Advantage is confirmed: QCNN 
converges faster than classical CNN and reaches 
higher accuracies when the number of parameters 
are similar.
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Chen, S. Y. C., Wei, T. C., Zhang, C., Yu, H., & Yoo, S. (2022). Quantum convolutional neural networks for high energy physics data analysis. 
Physical Review Research, 4(1), 013231.



Maintaining Quantum Advantage for Sparse Data

Chen, S.Y.C.; Wei, T.C.; Zhang, C.; Yu, H.; Yoo, S. Hybrid Quantum-Classical Graph Convolutional Network. arXiv 2021, arXiv:2101.06189

• Approach: Combining graph 
convolutional operation and quantum 
amplitude encoding on 
Variational Quantum Circuits.

• Test Case: Demonstrated on simulated 
DUNE dataset.

• Result: QGCNN converges faster than 
classical CNN, and quantum CNN 
reaches higher accuracies when the 
number of parameters are similar.



Capturing Long-Term Temporal 
Dependencies with QML
• Challenge: Existing quantum time series models 

cannot capture longer-term temporal dependencies.

• Approach: Develop Long Short-Term Memory 
(LSTM) neural network algorithm on Variational 
Quantum Circuits.

• Test Case: Demonstrated on periodical functions 
and quantum dynamics (delayed quantum feedback, 
population inversion).

• Result: QLSTM converges faster than classical 
LSTM when the number of parameters are similar.

Chen, S.Y.C.; Yoo, S.; Fang, Y.L.L. Quantum Long Short-Term Memory. ICASSP 2022.



Evolutionary Quantum Machine Learning 
with Tensor Networks
Motivation: Without certain preprocessing, quantum 

reinforcement learning (RL) cannot deal with complex 
sequential decision problems.

Approach: 
Adapting quantum-inspired architectures, such as tensor 

network and evolutionary optimization algorithms, to 
solve quantum RL problems. 

Demonstrated on a maze navigation problem.
Impact: Hybrid tensor network-variational quantum circuit 

(TN-VQC) architecture can exceed the classical neural 
network models when both models are of similar size 
(number of parameters).

9

Chen, S. Y. C., Huang, C. M., Hsing, C. W., Goan, H. S., & Kao, Y. J. (2022). Variational quantum reinforcement 
learning via evolutionary optimization. Machine Learning: Science and Technology, 3(1), 015025.



Quantum Error Characterization [1]
• Utilizing Quantum Detector Tomography to characterize and 

compare the quantum error behavior of different quantum 
computers on IBM Q 5 Tenerife and IBM Q 5 Yorktown

• The characterized detector model deviates from the ideal 
projectors by a few percent

• Observed crosstalk across qubits (qubit operations influencing 
each other)

• Consistent error behavior out of multiple measurements shows 
the possible approach to estimate ideal detection distribution

• Gradual distribution shift suggested the continual alignment needs

(left) IBM QX4 (5qubit) measured individually, deviate 
from perfect detectors (vectors pointing to north & 
south poles)

[1] Chen, Yanzhu, Maziar Farahzad, Shinjae Yoo, and Tzu-Chieh Wei. "Detector tomography on IBM quantum computers 
and mitigation of an imperfect measurement." Physical Review A 100, no. 5 (2019): 052315.

(top) Showing consistent error behavior
out of multiple measurements, which 
shows the possibilities to estimate ideal 
detection distribution.



Quantum Architecture Search via 
Continual Reinforcement Learning
Motivation: Existing quantum architecture search 
schemes assume some prior knowledge of 
quantum circuits, are sampling from a set of 
potential circuits, and cannot automatically reuse 
previously learned policy.
Approach: Offer a continual reinforcement 
learning (DRL) agent to generate desired 
quantum circuits without encoded physics 
knowledge that can reduce training episodes with 
previous learning knowledge.
Results: The DRL agent can generate quantum 
circuits under the effects of noise and can learn 
quickly when device noise patterns change.
Impact: Results suggest the possibilities of 
building ML models to rewrite and update 
quantum AI.

Ye, E., & Chen, S. Y. C. (2021). Quantum Architecture Search via Continual Reinforcement Learning. 
arXiv preprint arXiv:2112.05779. 11



Differentially Private QML for Sensitive 
Data

Watkins, William M., Samuel Yen-Chi Chen, and Shinjae Yoo. "Quantum machine learning with differential privacy." Scientific Reports 13, no. 1 (2023): 2453.

• Challenge: Is it possible to train a QML 
model with good performance while 
simultaneously preserving privacy?

• Approach: Combining the differentially 
private (DP) optimization algorithm with 
optimized quantum circuit parameters.

• Results: Demonstrated the QML can be 
trained with DP algorithms and maintain 
performance (accuracy).

• Impact: Quantum advantage confirms that 
DP-QML can reach comparable 
accuracies to classical models while using 
fewer parameters.



Federated Quantum Machine Learning
Challenge: Efficient Training of QML models on NISQ-era 

quantum computers.

Approach: Create a Federated QML Training Framework 
executed on an array of quantum computers.

Results:

• Performance does not degrade, suggesting 
that distributed training of QML is possible.

• Opens the possibilities that training can be 
scaled up to large arrays of quantum 
computers.

Chen, S.Y.-C.; Yoo, S. Federated Quantum Machine Learning. Entropy 2021, 23, 460



Quantum Federated Learning with 
Quantum Networks
Achievements
Implementing quantum federated learning (QFL) 

with quantum networks (QNs) to enhance data 
transfer and data security

Using ring-topology structure to avoid centralized 
nodes and central data aggregation (no need for 
quantum memory)

Employing quantum teleportation in the QFL, 
quantum model (parameters) is free from leaking 
or eavesdropping.

Future Work
Create Distributed Quantum Sensing using the 

developed QFL + QN without data gathering –
more secure; less noise

Apply to quantum astrometry for cosmology and 
dark matter detection via photon-entangled optical 
interferometry
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Decentralized 
ring QFL 
framework: 
Data are divided 
between clients 
for training. 
Quantum models 
then update and 
pass weights to 
the next.

Hub-spoke topology (left) 
and Ring topology (right): 
(a) contains an extra 
central node to collect 
client models, while in (b) 
clients simply pass model 
parameters to the next.

Staff: Shinjae Yoo; Huan-Hsin Tseng Quantum federated learning with quantum networks. International Conference 
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024.



Upcoming Distributed Quantum Sensing and 
Machine Learning
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• Distributed Reinforcement Learning
• Quantum Sensor Network (A, B, …)
• Tunable  two-qubit (or two-mode) sets of 

gates described by quantum channels 
ெௌಾ

or multi channels and qubit settings
• Optimize the parameters of a quantum 

sensor network
• choosing a particular set {𝑈ெௌಾ

} 

• tuning parameters of ancilla states 𝜚ො (𝜃)

• applying the Distributed Quantum Machine 
Learning approach. 



Quantum xAI
Motivation: 

• AI is widely applied on various co-design and operation 
activities with the specified objective functions

• Next generation detector / accelerator / reactor design and 
operation

• Disruptive energy efficient computing is seriously required

Challenges: 

• Design and operation competing objective (energy vs 
accuracies vs noise)

• Algorithmic behavior understanding given the device 
condition

Related Work:

• QGrad-Cam for QML (IBM 100+ qubit test awards) [1]

• Causal Analysis for understanding entanglement, 
expressibility, etc. [2]

1. Lin, Hsin-Yi, Huan-Hsin Tseng, Samuel Yen-Chi Chen, and Shinjae Yoo. "Quantum Gradient Class Activation Map for Model Interpretability." In 2024 IEEE 
Workshop on Signal Processing Systems (SiPS), pp. 165-170. IEEE, 2024.

2. Park, Junghoon, Samuel Yen-Chi Chen, Shinjae Yoo, Huan-Hsin Tseng, and Wells Fargo. "Over the Quantum Rainbow: Explaining Hybrid Quantum 
Reinforcement Learning.“, QCE 2024
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• Motivation: Transfer learning between two "make_moons" datasets 𝐷 → 𝐷෩ (Fig. 1).
• Approach: Our One-shot fine-tuning (Quantum Variational Analysis, QVA) vs. Gradient Descent (GD).
• Results: QVA achieves 77.2% accuracy on the target domain immediately, competing with GD after 17 

epochs.

Fig.1 Transfer learning from 𝐷 → 𝐷෩

QVA formula: and

Quantum Transfer Learning

Tseng, Huan-Hsin, Hsin-Yi Lin, Samuel Yen-Chi Chen, and Shinjae Yoo. "Transfer Learning Analysis of Variational Quantum 
Circuits." arXiv preprint arXiv:2501.01507 (2025).



Quantum Learning to Measure Quantum 
Neural Networks
• Challenge: Existing QML (VQC) models rely on fixed 

measurement observables (e.g., Fig. 1 with Pauli 
matrices), limiting flexibility and task-specific optimization.

• Approach: Learnable, parameterized observables Q for 
VQCs (Fig. 2).

• Results: Demonstrated QNN (make moon, 4 qubit, 2 
layers)
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Fig. 1: Conventional VQC with fix (predefined) observables  

Fig. 2: VQC with learnable observables (Hermitians) 

Samuel Yen-Chi Chen, Huan-Hsin Tseng, Hsin-Yi Lin, Shinjae Yoo, "Learning to Measure Quantum Neural Networks", 
arXiv:2501.05663 (2025)
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