

CONSTRUCTER AND SUBARUM CONSTRUCT AND ALLABORITY CONSUMINGLY
 Quantum Machine Learning for
 Particle Physics and Beyond Particle Physics and Beyond **Quantum Machine Learning for
Particle Physics and Beyond
Shinjae Yoo
Artificial Intelligence Department**
Artificial Intelligence Department
Computing and Data Science Directorate

Shinjae Yoo

Artificial Intelligence Department

Outline

- **Outline**
• Quantum Machine Learning for Particle Physics
• Quantum Deep Learning
• QCNN, QGCNN, QLSTM, QRL **Outline**
• Quantum Machine Learning for Particle P
• Quantum Deep Learning
• Quantum Noise and Related Learning **utline**

Quantum Machine Learning for Particle Physic

Quantum Deep Learning
• QCNN, QGCNN, QLSTM, QRL

Quantum Noise and Related Learning
• Quantum Architecture Search **Outline**
• Quantum Machine Learning for Particle Physics
• Quantum Deep Learning
• Quantum Noise and Related Learning
• Quantum Architecture Search
• Differential Privacy, Federated Learning **utline**

Quantum Machine Learning for Particle Phys

Quantum Deep Learning
• QCNN, QGCNN, QLSTM, QRL

Quantum Noise and Related Learning
• Quantum Architecture Search
• Differential Privacy, Federated Learning
• qGradCam, **utline**

Quantum Machine Learning for Particle Physics

Quantum Deep Learning

• QCNN, QGCNN, QLSTM, QRL

Quantum Noise and Related Learning
• Quantum Architecture Search
• Differential Privacy, Federated Learning
• qGrad **utline**

Quantum Machine Learning for Particle Physics

Quantum Deep Learning

• QCNN, QGCNN, QLSTM, QRL

Quantum Noise and Related Learning

• Quantum Architecture Search

• Differential Privacy, Federated Learning

• dG **Quantum Machine Learning for Particle Physics

Quantum Deep Learning

• QCNN, QGCNN, QLSTM, QRL

Quantum Noise and Related Learning

• Quantum Architecture Search

• Differential Privacy, Federated Learning

• qGradCam, T** • Quantum Machine Learning for I

• Quantum Deep Learning

• QCNN, QGCNN, QLSTM, QRL

• Quantum Noise and Related Lea

• Quantum Architecture Search

• Differential Privacy, Federated Lea

• qGradCam, Transfer Learning

•
- -
- -
	-
	-
	-
-

Quantum Machine Learning for Particle Physics **Quantum Machine Learning for Particle Phy

• Particle Physics (PP) pose an extreme scale data challenges

• PP data (DUNE, LHC, e-RHIC, etc) are extremely sparse

• Increased computational complexities (i.e. HL-LHC to**

- - PP data (DUNE, LHC, e-RHIC, etc) are extremely sparse
	-
- **antum Machine Learning for Particle P**
ticle Physics (PP) pose an extreme scale data challenges
PP data (DUNE, LHC, e-RHIC, etc) are extremely sparse
Increased computational complexities (i.e. HL-LHC to
reconstruction usi • Our project targets to develop the best quantum deep learning algorithms for event detection and reconstruction on PP data challenges (top) Neutrino interaction events are

characterized by extremely sparse data, as can be seen in the above 3-D image reconstruction from 2-D measurements.

(left) The ATLAS trigger track reconstruction time (quadratic time $t\bar{t}$ Monte Carlo simulated with 46, 69 and 138 interactions per bunch crossing, measured on a 2.4 GHz Intel Xeon CPU.

Quantum ML

Input Convolution Convolution Subsample

Quantum Tensor Network Quantum Architecture Search

Quantum Federated Learning

Variational Quantum Circuits (VQC)

- Hybrid paradigm to leverage both quantum and classical computing.
- classical computing.
Certain computations are carried out on quantum
computers.
Chara (e.g., coloulating new parameters) are computers.
- Others (e.g., calculating new parameters) are done on classical computers.

Updated quantum circuit parameters

Optimization

Quantum CNN Learning for High Energy Physics Data Analytics **Quantum CNN Learning for High Enryl Signs and CNN Learning for High Enryl Signs and Corpus experimentation/simulations have spatial relationships well.

Motivation: Various experimentation/simulations have cannot capture**

Approach:

- Adapt convolutional neural network (CNN) algorithm, where of the most popular deep learning architectures in computer vision, to a Variational Qŭantum
Classifier (VQC).
- Demonstrated on a Deep Underground Neutrino Experiment dataset.
- Impact: Quantum Advantage is confirmed: QCNN
Converges faster than classical CNN and reaches higher accuracies when the number of parameters
are similar.

Chen, S. Y. C., Wei, T. C., Zhang, C., Yu, H., & Yoo, S. (2022). Quantum convolutional neural networks for high energy physics data analysis. Physical Review Research, 4(1), 013231.

Maintaining Quantum Advantage for Sparse Data

- Approach: Combining graph convolutional operation and quantum amplitude encoding on Maintaining Quantum Advantag

Approach: Combining graph

convolutional operation and quantum

amplitude encoding on

Variational Quantum Circuits.

Test Case: Demonstrated on simulated

DUNE dataset. **Maintaining Quantum Advantage**

• Approach: Combining graph

• convolutional operation and quantum

amplitude encoding on

• Variational Quantum Circuits.

• Test Case: Demonstrated on simulated

• DUNE dataset.

• Resul
- Test Case: Demonstrated on simulated DUNE dataset.
- classical CNN, and quantum CNN reaches higher accuracies when the number of parameters are similar.

Chen, S.Y.C.; Wei, T.C.; Zhang, C.; Yu, H.; Yoo, S. Hybrid Quantum-Classical Graph Convolutional Network. arXiv 2021, arXiv:2101.06189

Capturing Long-Term Temporal Dependencies with QML **Capturing Long-Term Tempora**
 Capturing Long-Term Tempora
 Challenge: Existing quantum time series models

cannot capture longer-term temporal dependencies.
 Approach: Develop Long Short-Term Memory

(LSTM) neural n

- Challenge: Existing quantum time series models cannot capture longer-term temporal dependencies.
- Approach: Develop Long Short-Term Memory Quantum Circuits.
- Test Case: Demonstrated on periodical functions \blacksquare and quantum dynamics (delayed quantum feedback, OLSTM population inversion).
- Result: QLSTM converges faster than classical LSTM when the number of parameters are similar.

Evolutionary Quantum Machine Learning with Tensor Networks Evolutionary Quantum Machine Learn

vith Tensor Networks

lotivation: Without certain preprocessing, quantum

reinforcement learning (RL) cannot deal with complex

pproach:

Motivation: Without certain preprocessing, quantum
reinforcement learning (RL) cannot deal with complex
mever sequential decision problems.

Approach:

Adapting quantum-inspired architectures, such as tensor network and evolutionary optimization algorithms, to solve quantum RL problems.

Demonstrated on a maze navigation problem.

Impact: Hybrid tensor network-variational quantum circuit (TN-VQC) architecture can exceed the classical neural \Box network models when both models are of similar size (number of parameters).

Chen, S. Y. C., Huang, C. M., Hsing, C. W., Goan, H. S., & Kao, Y. J. (2022). Variational quantum reinforcement learning via evolutionary optimization. Machine Learning: Science and Technology, 3(1), 015025.

- Quantum Error Characterization [1]
• Utilizing Quantum Detector Tomography to characterize and

compare the quantum error behavior of different quantum
 $\begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$ compare the quantum error behavior of different quantum **UANTUM Error Characterization [1]**

Utilizing Quantum Detector Tomography to characterize and

compare the quantum error behavior of different quantum

computers on IBM Q 5 Tenerife and IBM Q 5 Yorktown

• The characteri
	- The characterized detector model deviates from the ideal $\sum_{\alpha=0}^{\infty}$ projectors by a few percent
	- Observed crosstalk across qubits (qubit operations influencing $10^{-0.2}$ each other)
	- Consistent error behavior out of multiple measurements shows **Example 240** the possible approach to estimate ideal detection distribution (top) Showing consisted
	- Gradual distribution shift suggested the continual alignment needs

(top) Showing consistent error behavior out of multiple measurements, which shows the possibilities to estimate ideal detection distribution.

(left) IBM QX4 (5qubit) measured individually, deviate from perfect detectors (vectors pointing to north & south poles)

NERGY

[1] Chen, Yanzhu, Maziar Farahzad, Shinjae Yoo, and Tzu-Chieh Wei. "Detector tomography on IBM quantum computers and mitigation of an imperfect measurement." Physical Review A 100, no. 5 (2019): 052315.

Quantum Architecture Search via Continual Reinforcement Learning

Motivation: Existing quantum architecture search schemes assume some prior knowledge of quantum circuits, are sampling from a set of potential circuits, and cannot automatically reuse previously learned policy.

Approach: Offer a continual reinforcement learning (DRL) agent to generate desired
quantum circuits without encoded physics
knowledge that can reduce training episodes with
previous learning knowledge.

Results: The DRL agent can generate quantum circuits under the effects of noise and can learn quickly when device noise patterns change.

Impact: Results suggest the possibilities of building ML models to rewrite and update quantum AI.

Ye, E., & Chen, S. Y. C. (2021). Quantum Architecture Search via Continual Reinforcement Learning. α arm α archives the content of α are α and α

Differentially Private QML for Sensitive Data **Differentially Private QML fo**
 Challenge: Is it possible to train a QML

model with good performance while

simultaneously preserving privacy?

Approach: Combining the differentially

private (DP) optimization algorit

- Challenge: Is it possible to train a QML model with good performance while
simultaneously preserving privacy?
- Approach: Combining the differentially private (DP) optimization algorithm with $\begin{array}{ccc}\n\hline\n\text{H}_{\text{m}} & \text{H}_{\text{m}}\n\end{array}$ optimized quantum circuit parameters.
- Results: Demonstrated the QML can be trained with DP algorithms and maintain Updated quantum circuit parameters performance (accuracy).
- Impact: Quantum advantage confirms that DP-QML can reach comparable accuracies to classical models while using fewer parameters.

Brookhaven Watkins, William M., Samuel Yen-Chi Chen, and Shinjae Yoo. "Quantum machine learning with differential privacy." Scientific Reports 13, no. 1 (2023): 2453. **National Laboratory**

Federated Quantum Machine Learning Federated Quantum Machine Learnin

Challenge: Efficient Training of QML models on NISQ-era

Approach: Create a Federated QML Training Framework

Approach: Create a Federated QML Training Framework

Results:

Performance do **Example 12 Constrained Constrained Machine Let**

Ilenge: Efficient Training of QML models on NISQ-era

antum computers.
 create a Federated QML Training Framework

ectuded on an array of quantum computers.
 Performanc

Challenge: Efficient Training of QML models on NISQ-era quantum computers.

executed on an array of quantum computers.

Results:

- that distributed training of QML is possible.
- scaled up to large arrays of quantum

Brookhaven⁻ Chen, S.Y.-C.; Yoo, S. Federated Quantum Machine Learning. Entropy 2021, 23, 460National Laboratory

**Quantum Federated Learning with
Quantum Networks** Quantum Networks Quantum Federated Learning with Quantum networks Achievements

Implementing quantum federated learning (QFL)

With quantum networks (QNs) to enhance data

Using ring-topology structure to avoid centralized

Using ring-topo **Quantum Federated Learning (QFL)**
 Quantum Networks

Implementing quantum federated learning (QFL)

with quantum networks (QNs) to enhance data

transfer and data security

Using ring-topology structure to avoid central **Quantum Federated Learning w**
 Quantum Networks

Achievements

Implementing quantum federate learning (QFL)

Utility quantum networks (QNs) to enhance data

transfer and data security

Using ring topology structure to a

Achievements

- transfer and data security
-
-

Future Work

- Create Distributed Quantum Sensing using the developed QFL + QN without data gathering more secure; less noise
- Apply to quantum astrometry for cosmology and dark matter detection via photon-entangled optical interferometry

and Ring topology (right): (a) contains an extra central node to collect clients simply pass model parameters to the next.

Staff: Shinjae Yoo; Huan-Hsin Tseng **Conference** Quantum federated learning with quantum networks. International Conference 14 on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024.

14

Upcoming Distributed Quantum Sensing and Machine Learning **Upcoming Distributed Quantum Sen

Machine Learning

• Distributed Reinforcement Learning

• Quantum Sensor Network (A, B, ...)

• Tunable two-qubit (or two-mode) sets of pcoming Distributed Quantur

achine Learning

Distributed Reinforcement Learning

• Quantum Sensor Network (A, B, ...)
• Tunable two-qubit (or two-mode) sets of

gates described by quantum channels

(***II* **a lear multiple pcoming Distributed Quantum**
 achine Learning

Distributed Reinforcement Learning
 \cdot Quantum Sensor Network (A, B, ...)
 \cdot Tunable two-qubit (or two-mode) sets of

gates described by quantum channels
 $\{U_{MS_M}\}$ **ocoming Distributed Quantum

achine Learning**

Distributed Reinforcement Learning

• Quantum Sensor Network (A, B, ...)

• Tunable two-qubit (or two-mode) sets of

gates described by quantum channels

{ U_{MS_M} } or multi Fributed Reinforcement Learning
 $\hat{Q}_{fs}(\varphi)$
 \hat{Q}_{fs}

- -
- gates described by quantum channels $\{M_{SM}\}$ or multi channels and qubit settings **: hine Learning**

stributed Reinforcement Learning

Quantum Sensor Network (A, B, ...)

Tunable two-qubit (or two-mode) sets of

gates described by quantum channels
 $\{U_{MS_M}\}$ or multi channels and qubit settings

Optim **Examined Reinforcement Learning

Cuantum Sensor Network (A, B, ...)**

Tunable two-qubit (or two-mode) sets of

gates described by quantum channels
 $\{U_{MS_M}\}$ or multi channels and qubit settings

Optimize the parameters
	- sensor network
		- choosing a particular set $\{U_{MS_M}\}$
		-
		- Learning approach.

Quantum xAI

Motivation:

- AI is widely applied on various co-design and operation $\frac{q_{\text{rad-cam}}}{q_{\text{beam}}}$
- **Quantum xAI**
 Motivation:

Al is widely applied on various co-design and operation

activities with the specified objective functions

 Next generation detector / accelerator / reactor design and

peration

pientative operation Motivation:

Al is widely applied on various co-design and operation

activities with the specified objective functions

• Next generation detector / accelerator / reactor design and

operation

• Disruptive energy efficie
-

Challenges:

- Design and operation competing objective (energy vs accuracies vs noise)
- condition

Related Work:

-
- expressibility, etc. [2]

- Workshop on Signal Processing Systems (SiPS), pp. 165-170. IEEE, 2024.
- Reinforcement Learning.", QCE 2024

Quantum Transfer Learning

-
-
- **Quantum Transfer Learning**
 Motivation: Transfer learning between two "make_moons" datasets $D \rightarrow \overline{D}$ (Fig. 1).

Approach: Our One-shot fine-tuning (Quantum Variational Analysis, QVA) vs. Gradient Descent (GD).

Resu epochs.

Quantum Learning to Measure Quantum Neural Networks

- **Challenge:** Existing QML (VQC) models rely on fixed

measurement aboar which (e.g. Fig. 4 with Davii measurement observables (e.g., Fig. 1 with Pauli matrices), limiting flexibility and task-specific optimization. $F_{\text{Eq. 1: Com}}$
- **Approach**: Learnable, parameterized observables Q for $\overline{ }$ (0) VQCs (Fig. 2).

$$
\langle Q\rangle:=\langle\psi_0|\,V^{\dagger}(x_j) \overline{U^{\dagger}(\theta)}\overline{Q}\overline{U(\theta)}\overline{V(x_j)}\,|\psi_0\rangle\in\mathbb{R}
$$

• Results: Demonstrated QNN (make moon, 4 qubit, 2 layers)

Fig. 2: VQC with learnable observables (Hermitians)

Samuel Yen-Chi Chen, Huan-Hsin Tseng, Hsin-Yi Lin, Shinjae Yoo, "Learning to Measure Quantum Neural Networks", arXiv:2501.05663 (2025)

35

40

Acknowledgement **Acknowledgement**

Team:
• Huan-Hsin Tseng, Chao Zhang (BNL)
• Tzu-Chieh Wei (Stony Brook University)
• Sau Lan Wu, Shaojun Sun (U. Washington)
• Samuel Yen-Chi Chen (Wells Eargo) **Acknowledgement**

Team:

• Huan-Hsin Tseng, Chao Zhang (BNL)
• Tzu-Chieh Wei (Stony Brook University)
• Sau Lan Wu, Shaojun Sun (U. Washington)
• Samuel Yen-Chi Chen (Wells Fargo)
• Jungboon Park, Jiook Cha (Seoul Nationa **Acknowledgement**
Team:
• Huan-Hsin Tseng, Chao Zhang (BNL)
• Tzu-Chieh Wei (Stony Brook University)
• Sau Lan Wu, Shaojun Sun (U. Washington)
• Samuel Yen-Chi Chen (Wells Fargo)
• Junghoon Park, Jiook Cha (Seoul National **Acknowledgement**

Team:

• Huan-Hsin Tseng, Chao Zhang (BNL)
• Tzu-Chieh Wei (Stony Brook University)
• Sau Lan Wu, Shaojun Sun (U. Washington)
• Samuel Yen-Chi Chen (Wells Fargo)
• Junghoon Park, Jiook Cha (Seoul Nationa **Acknowledgement**

Team:

• Huan-Hsin Tseng, Chao Zhang (BNL)

• Tzu-Chieh Wei (Stony Brook University)

• Sau Lan Wu, Shaojun Sun (U. Washington)

• Samuel Yen-Chi Chen (Wells Fargo)

• Junghoon Park, Jiook Cha (Seoul Nat **Acknowledgement**

Feam:

• Huan-Hsin Tseng, Chao Zhang (BNL)

• Tzu-Chieh Wei (Stony Brook University)

• Sau Lan Wu, Shaojun Sun (U. Washington)

• Samuel Yen-Chi Chen (Wells Fargo)

• Junghoon Park, Jiook Cha (Seoul Nat

Team:

-
-
-
-
- Feam:

Huan-Hsin Tseng, Chao Zhang (BNL)

 Tzu-Chieh Wei (Stony Brook University)

 Sau Lan Wu, Shaojun Sun (U. Washington)

 Samuel Yen-Chi Chen (Wells Fargo)

 Junghoon Park, Jiook Cha (Seoul National University)

Fu Team:
• Huan-Hsin Tseng, Chao Zhang (BNL)
• Tzu-Chieh Wei (Stony Brook University)
• Sau Lan Wu, Shaojun Sun (U. Washington)
• Samuel Yen-Chi Chen (Wells Fargo)
• Junghoon Park, Jiook Cha (Seoul National University)
• Tund Team:
• Huan-Hsin Tseng, Chao Zhang (BNL)
• Tzu-Chieh Wei (Stony Brook University)
• Sau Lan Wu, Shaojun Sun (U. Washington)
• Samuel Yen-Chi Chen (Wells Fargo)
• Junghoon Park, Jiook Cha (Seoul National University)
• HEP

Funding / Resource:

-
-
-
-

